Part 1 - Basic Interferometers for Optical Testing

- Two Beam Interference
- Fizeau and Twyman-Green interferometers
- Basic techniques for testing flat and spherical surfaces
- Mach-Zehnder, Scatterplate, and Smartt Interferometers
- Shearing Interferometers
- Typical Interferograms

Two-Beam Interference Fringes

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\alpha_1 - \alpha_2)$$

 $\alpha_1 - \alpha_2$ is the phase difference between the two interfering beams

$$\alpha_1 - \alpha_2 = (\frac{2\pi}{\lambda})$$
 (optical path difference)

Sinusoidal Interference Fringes

$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\alpha_1 - \alpha_2)$$

Classical Fizeau Interferometer

Typical Interferogram Obtained using Fizeau Interferometer

Relationship between Surface Height Error and Fringe Deviation

Surface height error =
$$\left(\frac{\lambda}{2}\right)\left(\frac{\Delta}{S}\right)$$

Fizeau Fringes

1998 - James C. Wyant

For a given fringe the separation between the two surfaces is a constant.

Height error = $(\lambda/2)(\Delta/S)$

Interferogram

Part 1 Page 7 of 43

Fizeau Fringes for Concave and Convex Surfaces

Twyman-Green Interferometer (Flat Surfaces)

Twyman-Green Interferometer (Spherical Surfaces)

Typical Interferogram

Fizeau Interferometer-Laser Source (Flat Surfaces)

Fizeau Interferometer-Laser Source (Spherical Surfaces)

Testing High Reflectivity Surfaces

Mach-Zehnder Interferometer

Testing samples in transmission

Laser Beam Wavefront Measurement

Scatterplate Interferometer Setup

Microscopic Image of Scatterplate

Scatterplate Interferometer

Scatterplate Interferograms

Smartt Point Diffraction Interferometer

Lateral Shear Interferometry

Measures wavefront slope **Shear Plate** Source **Collimator** Lens Interferogram - Shear = Δx

Lateral Shear Fringes

 $\Delta W(x,y)$ is wavefront being measured

Bright fringe obtained when
$$\Delta W(x + \Delta x, y) - \Delta W(x, y) = m\lambda$$

$$\left(\frac{\partial \Delta W(x,y)}{\partial x}\right)_{\text{Average over shear distance}} (\Delta x) = m\lambda$$

Measures average value of slope over shear distance

Collimation Measurement

No wedge in shear plate

Not collimated

Collimated (one fringe)

Vertical wedge in shear plate

Not collimated

Collimated

Typical Lateral Shear Interferograms

Lateral Shear Interferometer

Measures slope of wavefront, not wavefront shape.

Interferogram Obtained using Grating Lateral Shear Interferometer

Rotating Grating LSI (Variable Shear)

Rotating Grating LSI

Shearing Interferograms(Different Shear)

Radial Shear Interferometry

Wavefront is interfered with expanded version of itself

Analysis of Radial Shear Interferograms

Wavefront being measured

$$\Delta W(\rho, \theta) = W_{020}\rho^2 + W_{040}\rho^4 + W_{131}\rho^3\cos\theta + W_{222}\rho^2\cos^2\theta$$

Expanded beam can be written

$$\Delta W(R\rho, \theta) = W_{020}(R\rho)^2 + W_{040}(R\rho)^4 + W_{131}(R\rho)^3 \cos \theta + W_{222}(R\rho)^2 \cos^2 \theta$$

Hence, a bright fringe is obtained whenever

$$\Delta W(\rho, \theta) - \Delta W(R\rho, \theta) = W_{020}\rho^2(1 - R^2) + W_{040}\rho^4(1 - R^4) + W_{131}\rho^3(1 - R^3)\cos\theta + W_{222}\rho^2(1 - R^2)\cos^2\theta$$

Same as Twyman-Green if divide each coefficient by (1 - Rn)

Radial Shear Interferogram

- Variable Sensitivity Test
 - -Large shear results same as for Twyman-Green
 - -Small shear Low sensitivity test

Interferograms, Spherical Aberration

1998 - James C. Wyant

Part 1 Page 34 of 43

Interferograms Small Astigmatism, Sagittal Focus

Interferograms Small Astigmatism, Medial Focus

Interferograms, Large Astigmatism, Sagittal Focus, Small Tilt

Interferograms, Large Astigmatism, Medial Focus, Small Tilt

Interferograms Small Coma, Large Tilt

Interferograms Large Coma, Small Tilt

Interferograms Large Coma, Large Tilt

Interferograms Small Focal Shift

Interferograms Combined Aberrations

